Interest Formulas

PV, FV, n, r (No Payments)		
FV = PV(1+nr)	Future value FV of a present value PV at simple interest r	
	for n years (periods).	
$FV = PV(1+r)^n$	Future value F of a present value P at compound interest r	
	for n years (periods).	
Future value F of a present value P at compound interest r		
$FV = PV(1+r/k)^{kn}$	for n years (periods) when the compounding takes place k	
	times per year. For example k=4, and k=12 are common.	
$FV = PV e^{nr}$	Future value F of a present value P with continuous	
	compounding at interest rate r for n years.	
IAF	The interest rate adjustment factor (IAF) is the factor that	
	converts between PV and FV, $(1+r)^n$.	
	Effective annual rate (EAR) = $IAF - 1$. In this case, IAF is	
EAR	usually equal to $(1+r/n)^{12}$, where n is the compounding	
	periods per year.	
$(1)^n$	The definition of the number e.	
$e = \lim_{n \to \infty} \left[1 + \frac{1}{n} \right]$		
$n \rightarrow \infty$ (n)	The interest rate r that will arow on amount DV to an	
$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$ $r = \left(\frac{FV}{PV} \right)^{\frac{1}{n}} - 1$	The interest rate r that will grow an amount PV to an amount FV in a periods	
	amount FV in n periods.	
	The number of periods n needed to grow an amount PV to	
$\log\left(\frac{FV}{TV}\right)$	an amount FV at an interest rate r.	
$n = \frac{O(PV)}{PV}$		
$n = \frac{\log\left(\frac{FV}{PV}\right)}{\log(1+r)}$		
$\log 2$	The number of periods needed to double money at an	
$n = \frac{\log 2}{\log(1+r)}$	interest rate r.	
	V, FV, s, n, r (Savings Formulas)	
$(1+r)^n - 1$	Savings Future Value (Normal) . Future value of an	
$FV = s \frac{(1+r)^n - 1}{r}$	ordinary "savings" annuity with payment "s" at the end of	
,	the period with interest rate r for n periods. r is normally	
	equal to "annual rate $\div 12$ ", and n is normally equal to "years	
	× 12."	
, rFV	Savings Payment based upon FV.	
$s = \frac{rFV}{\left(1+r\right)^n - 1}$		
	Savings Future Value (Annuity Due). Future value of an	
$(1+r)^n - 1$	annuity due with payment "s" at the beginning of the period	
$FV = s(1+r)\frac{(1+r)^n - 1}{r}$	with interest rate r for n periods. Notice that an annuity is	
	just shifted by one period or by $(1+r)^n$. Not commonly used.	
PV, FV, m, n, r (Loan Formulas)		
	Loan Payment for add-on interest r. Monthly payment m	
$m = \frac{PV(1+rn)}{n/12}$	for a loan of an amount PV with add-on interest. Note that	
10/12	loans work with PV's and savings work with FV's. The	
	future value of a loan is zero. n = number of months	

$PVr(1+r)^n$	Loan Payment for amortized loan. Monthly payment m
$m = \frac{PVr(1+r)^{n}}{(1+r)^{n}-1}$	for a loan of amount PV which amortizes at interest rate r.
	This is the rate associated with APR where interest is
	charged only on the unpaid balance of the loan. Note that
	there are no simple formulas for r and n. These values must
	be found with tables or iteratively on a calculator or
	computer. This also the formula for an income annuity .
DV.	Loan Payment – Calculator Format. This formula is the
$m = \frac{PVr}{1 - \frac{1}{\left(1 + r\right)^n}}$	e e e e e e e e e e e e e e e e e e e
1	same as the one above but expressed in a different format
$(1+r)^n$	that facilitates the computations on a simple calculator
<u> </u>	without writing down intermediate values or using the store
	function. Notice that in this form, it is easy to see that the as
	the number of payment periods n becomes very large, the
	monthly payment converge to an interest only loan with a
	single balloon payment sometime in the future.
$m = s(1+r)^n$	Savings to loan conversion factor. The monthly payment
	for a loan of x dollars is equal to the monthly savings
	amount to reach x dollars multiplied by the IAF.
	The unpaid balance of a loan at the end of period i.
$PV(1+r)^{i} - \frac{m[(1+r)^{i} - 1]}{r}$	The unpaid balance of a loan at the end of period 1.
$PV(1+r)^{i} - \frac{m[(1+r)^{i} - 1]}{r}$ $ABD = \frac{\sum_{i=1}^{n} B_{i}D_{i}}{\sum_{i=1}^{n} D_{i}}$	
$\sum_{n=1}^{n}$ D D	Average Daily Balance for credit card calculations, where
$\sum B_i D_i$	B_i is the balance that exists for D_i days.
$ABD = \frac{i=1}{n}$	
$\sum D_{i}$	
$\sum_{i=1}^{l}$	
	Annual Percentage Rate. APR is the interest rate that
	would generate an equivalent monthly loan payment if
	interest were charged only on the unpaid balance during loan
APR	payback. To find APR, you must know the loan and the
	payment amounts. You must then iteratively test alternative
	rates until you find a rate which will give a monthly
	payment acceptably close to the stated payment.
PITI	Monthly home mortgage payment base upon the sum of
	principal, interest, taxes, and insurance. Principal and
	interest (PI) are typically computed as a single number equal
	to the monthly loan payment for a normal amortized loan at
	the specified rate and term. Taxes and insurance must be
	converted to monthly amounts and added to the loan
	payment to get the monthly amount sent to the mortgage
	company, commonly called the PITI amount.
PV, FV, a, n, r (Income Annuity)	
Income Annuity. This is the amount of money a that you	
$PVr(1+r)^n$	could withdraw for n periods if you had PV invested at
$a = \frac{PVr(1+r)^{n}}{(1+r)^{n}-1}$	interest rate r. Note that this is the same formula used for
$(1+r)^{-1}$	
	loans.